怎么求矩阵的逆矩阵
若矩阵A可逆,则矩阵A满足消去律。即AB=O(或BA=O),则B=O,AB=AC(或BA=CA),则B=C。两个可逆矩阵的乘积依然可逆。矩阵可逆当且仅当它是满秩矩阵。逆矩阵是对方阵定义的,因此逆矩阵一定是方阵。
逆矩阵求法有三种,分别是伴随矩阵法、初等变换法和待定系数法。伴随矩阵法。根据逆矩阵的定义(对于n阶方阵A,如果有一个n阶方阵B满足AB=BA=E,则A是可逆的。),可以得出逆矩阵的计算公式:A^(-1)=1/|A|乘以A*,其中,A*为矩阵A的伴随矩阵。
上三角矩阵的逆矩阵 将上三角矩阵划分成块矩阵,如上图所示,则其逆矩阵结果如下图。下三角矩阵的逆矩阵 将下三角矩阵划分成块矩阵,如上图所示,则其逆矩阵结果如下图。只有主对角线不为零的矩阵 主对角元素取倒数,原位置不变。
计算逆矩阵((XX)^-1),其中逆矩阵等于伴随矩阵除以行列式的值,即(XX)^-1=adj(XX)/det(XX)。需要注意的是,如果矩阵(XX)的维度很大,直接计算逆矩阵可能比较困难或计算量很大,此时可以使用线性代数软件(如MATLAB)进行计算。
求一个矩阵的逆矩阵的方法:最简单的办法是用增广矩阵。如果要求逆矩阵是A,则对增广矩阵(AE)进行初等行变换,E是单位矩阵,将A化到E,此时此矩阵的逆就是原来E的位置上的那个矩阵,原理是A逆乘以(AE)=(EA逆)初等行变换就是在矩阵的左边乘以A的逆矩阵得到的。
矩阵的逆怎么求
矩阵的逆可以通过伴随矩阵除以原矩阵的行列式来求得。具体地,对于一个矩阵\( A \),其逆矩阵\( A^{-1} \)等于其伴随矩阵\( A^* \)除以矩阵\( A \)的行列式\( |A| \)。因此,首先需要计算矩阵\( A \)的行列式。
伴随矩阵法若\left|A\right|\ne0,则A^{-1}=\frac{A^{*}}{\left|A\right|}引入伴随矩阵更多是为了说明逆矩阵的存在性,除了二阶矩阵,一般不用其求具体矩阵的逆矩阵。
公式法:A的逆阵=(1/|A|)A*,其中A*是A的伴随阵。初等变换法:对分块矩阵(A,E)做行初等变换,前半部分A化成单位阵E时,后半部分E就化成了A的逆阵。猜测法:如果能通过已知条件得出AB=E或BA=E,则B就是A的逆矩阵。
上三角矩阵的逆矩阵 将上三角矩阵划分成块矩阵,如上图所示,则其逆矩阵结果如下图。下三角矩阵的逆矩阵 将下三角矩阵划分成块矩阵,如上图所示,则其逆矩阵结果如下图。只有主对角线不为零的矩阵 主对角元素取倒数,原位置不变。
矩阵的逆矩阵怎么求?
1、上三角矩阵的逆矩阵 将上三角矩阵划分成块矩阵,如上图所示,则其逆矩阵结果如下图。下三角矩阵的逆矩阵 将下三角矩阵划分成块矩阵,如上图所示,则其逆矩阵结果如下图。只有主对角线不为零的矩阵 主对角元素取倒数,原位置不变。
2、计算逆矩阵((XX)^-1),其中逆矩阵等于伴随矩阵除以行列式的值,即(XX)^-1=adj(XX)/det(XX)。需要注意的是,如果矩阵(XX)的维度很大,直接计算逆矩阵可能比较困难或计算量很大,此时可以使用线性代数软件(如MATLAB)进行计算。
3、若矩阵A可逆,则矩阵A满足消去律。即AB=O(或BA=O),则B=O,AB=AC(或BA=CA),则B=C。两个可逆矩阵的乘积依然可逆。矩阵可逆当且仅当它是满秩矩阵。逆矩阵是对方阵定义的,因此逆矩阵一定是方阵。
4、逆矩阵求法有三种,分别是伴随矩阵法、初等变换法和待定系数法。伴随矩阵法。根据逆矩阵的定义(对于n阶方阵A,如果有一个n阶方阵B满足AB=BA=E,则A是可逆的。),可以得出逆矩阵的计算公式:A^(-1)=1/|A|乘以A*,其中,A*为矩阵A的伴随矩阵。