哥德巴赫猜想是什么
哥德巴赫 - 哥德巴赫猜想 内容 1729年~1764年,哥德巴赫与欧拉保持了长达三十五年的书信往来。在1742年6月7日给欧拉的信中,哥德巴赫提出了以下的猜想: (a) 任何一个≥6的偶数,都可以表示成两个奇质数之和。
哥德巴赫猜想是17世纪法国数学家克劳德·哥德巴赫提出的一个有关质数的猜想,即:任何大于2的偶数都可以表示成两个质数之和。哥德巴赫自己无法证明,于是就写信请教赫赫有名的大数学家欧拉帮忙证明,但是欧拉也无法证明。
哥德巴赫猜想是世界近代三大数学难题之一。哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。
哥德巴赫猜想的内容
哥德巴赫猜想的具体内容是:任一大于2的偶数都可写成两个素数之和。任一大于5的奇数都可写成三个质数之和的猜想。
哥德巴赫猜想大致可以分为两个猜想:■每个不小于6的偶数都是两个奇素数之和;■每个不小于9的奇数都是三个奇素数之和 在1742年6月7日给欧拉的信中,哥德巴赫提出了一个命题。
哥德巴赫猜想是世界近代三大数学难题之一。1742年,由德国中学教师哥德巴赫在教学中首先发现的。1742年6月7日哥德巴赫写信给当时的大数学家欧拉,正式提出了以下的猜想:a.任何一个大于 6的偶数都可以表示成两个素数之和。
哥德巴赫猜想:每一个不小于4的偶数都是两个奇素数之和;每一个不小于9的奇数都是三个奇素数之和(已被证明)。对于1,筛法最好的结果是1+2(陈景润);数列法最好的结果是几乎证明。
任何不小于6的偶数,都是两个奇质数之和;任何不小于9的奇数,都是三个奇质数之和。这就是数学史上著名的“哥德巴赫猜想”。显然,第二个猜想是第一个猜想的推论。因此,只需在两个猜想中证明一个就足够了。
在1742年给欧拉的信中哥德巴赫提出了以下猜想:任一大于2的整数都可写成三个质数之和。因现今数学界已经不使用1也是素数这个约定,原初猜想的现代陈述为:任一大于5的整数都可写成三个质数之和。
如何证明哥德巴赫猜想?
如果您想要尝试证明哥赫巴德猜想,可以考虑以下两个方向: 利用现有的数学工具 目前已有许多数学家尝试证明哥赫巴德猜想,他们使用了各种各样的数学工具和方法,如分析数论、代数数论、几何学等。
证明:随便取一个奇数,如77,都可以写成三个质数之和,即77=53+17+7;再取另一个奇数,如461,可以表示为461=449+7+5,也就是三个素数之和。461也可以写成257+199+5,它仍然是三个素数的和。
世纪的数学家们研究哥德巴赫猜想所采用的主要方法,是筛法、圆法、密率法和三角和法等等高深的数学方法。解决这个猜想的思路,就像“缩小包围圈”一样,逐步逼近最后的结果。
“哥德巴赫猜想”的证明:设偶数为M,素数删除因子为√M≈N,那么,偶数的奇素数删除因子为:3,5,7,11…N,偶数(1+1)最低素数对的正解公式为:√M/4,即N/4。如果偶数能够被奇素数删除因子L整除。